

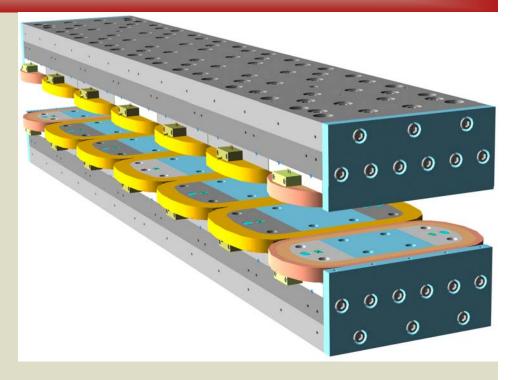
Damping Ring Magnets Report

Mark Palmer

Cornell University

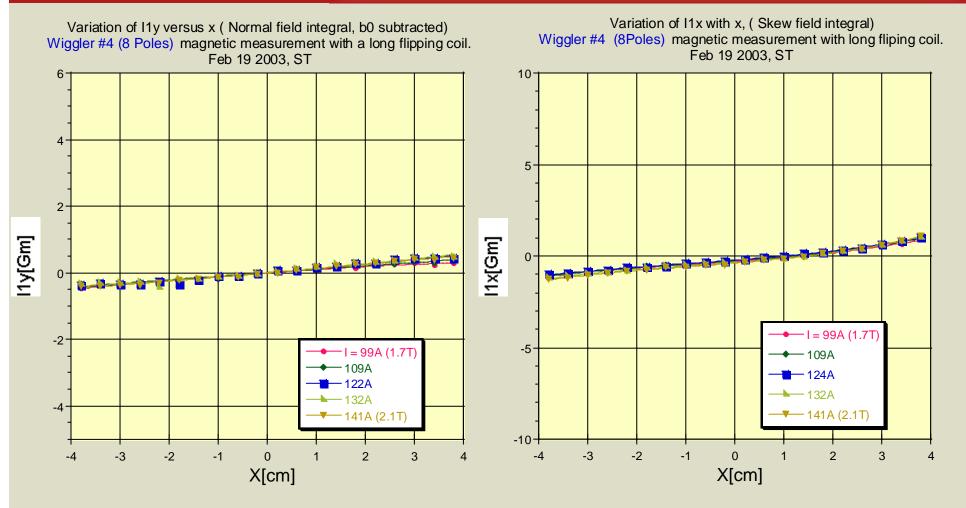
Laboratory for Elementary-Particle

Physics

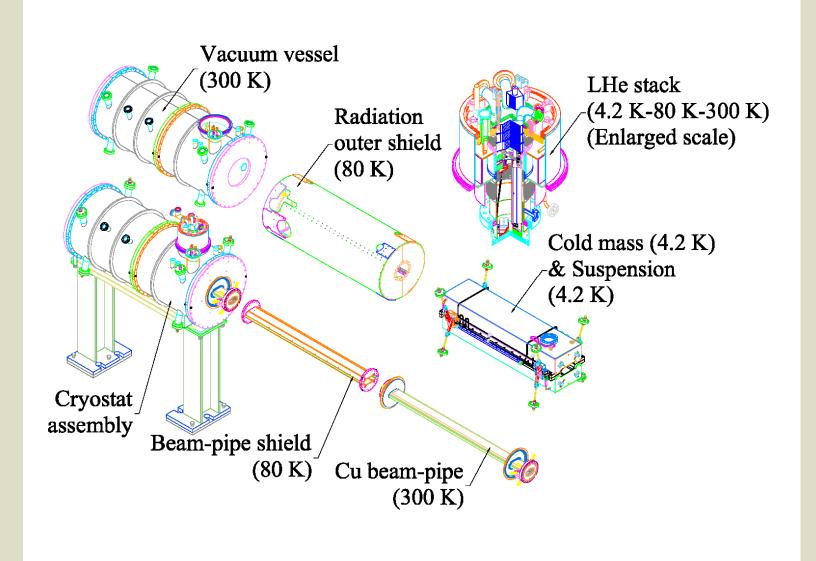

Outline

- Wigglers
 - CESR-c Wiggler
 - Key performance issues identified for Baseline Configuration Decision
 - Cost estimates used for BCD
 - Interface issues
- Introduction to Damping Rings Group Reference Design Report Support
 - DR Component Specification Sheets
 - Wiki site
- Brief Conventional Magnets Overview

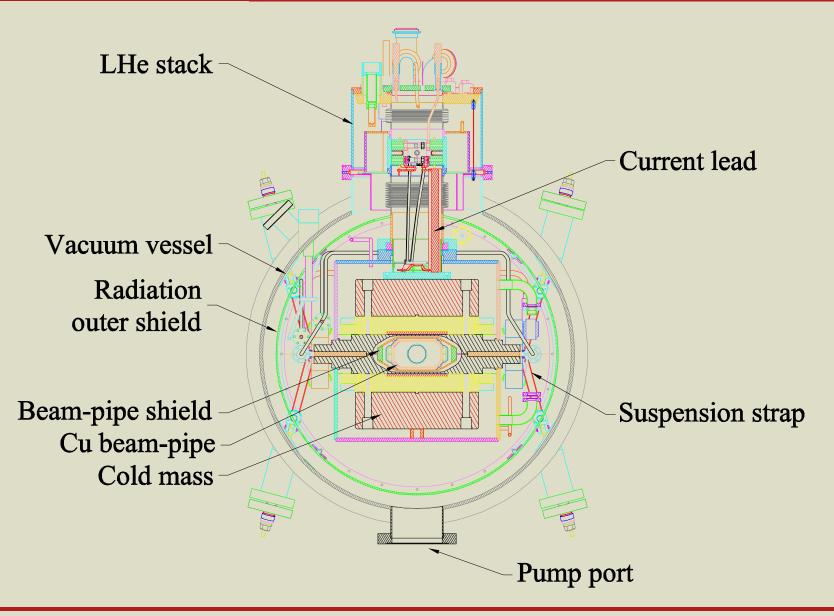
CESR-c Wigglers


- 2.1 Tesla Peak Field
 - Damping rate vs energy spread
- 50 mm Vertical Aperture
- 0, -0.3% field uniformity
 - +/- 20 mm electrostatically separated orbits
- 8-pole design installed
 - 40 cm period
 - Offers better linearity versus excitation
 - However, has larger cubic nonlinearity for fixed damping
- a₁ skew quad moment
 - Observed with both styles
 - Traced to variations in uniformity of coil geometry

- Single pole flux tests (warm) critical for final field quality
 - 0.2 turn sensitivity
 - O(10 μ m) in winding alignment
 - Pole matching



Flip Coil Measurements


A. Temnykh

Magnet Assembly

End View

CESR-c Wiggler Features

- Capable of operation between 1.4 and 2.1 T
- Coils are bath-cooled
 - 4.2 K heat load is ~2W/m
- Magnets are trained
 - 2-3 quenches to reach full operating current
- High Temperature SC leads to minimize heat load
- LN₂ heat shield
 - Could be modified for cold He gas
 - What will ILC tunnel rules be?
 - Also used for pre-cool
 - LN₂ thermal load dominated by transfer lines
- Beampipe integral to cryostat assembly
 - Warm bore
 - Not bakeable

Damping Ring Considerations

- Baseline Configuration Evaluation Matrix
 - Field Quality: Exceeds requirements
 - Simulations indicate that keeping field roll-off at the \sim 0.1% level throughout beam envelope (3 σ) is critical for dynamic aperture performance
 - Physical Aperture: 50 mm
 - Important for positron acceptance
 - Important for electron cloud performance
 - Power Consumption: Reasonable
 - Radiation Damage: Coils at large radius and well-shielded
 ⇒ looks OK
 - Auxilliary System: Cryogenics and Power
 - Cost: See following slides
 - Availability: See following slides

Wiggler Costing for BCD

• CESR-c Wiggler Production Costs

- ~\$140K/meter for magnet/cryostat
- ~\$20K/wiggler (stack and leads)
- \$16K/wiggler power supplies and controls (electrical and cryo)
- \$3-5K per wiggler (note 1 wiggler = 2-4 m) for transfer lines
- Cryogenic capacity: ~\$2K/meter
- \$160-170K/m capital cost depending on unit length
- Power costs: ~\$1K/meter/year

Manpower

- 5.0 Senior FTE
- 13 Technical Support FTE
- Above costs use LBNL 2005 manpower rates
- Numbers do not include initial engineering costs

Availability

Short-term availability

- Single wiggler fault expected to have minimal impact on operations
 - $\Delta Q_v \sim 0.01$ /wiggler
 - Retune and continue operations with ~1% degradation in damping time and <1% change in emittance or maintain an in-ring spare
- Superferric
 - PS failure
 - Cryogenic failure
 - Controls failure
 - Magnet failure
- Expect minimal time required in a damping ring scenario to disable a wiggler and resume operations. Defer repairs until scheduled maintenance periods

CESR-c Wiggler Experience

- Note: CESR wiggler fault requires full wiggler recovery before re-starting machine due to strong wiggler impact on optics $(\Delta Q_v \sim 0.1/\text{wiggler})$
- 11 wiggler faults in 300 operating days in mix of 6 wiggler and 12 wiggler operation

⇒~1 fault/250 wiggler-days of ops

- 7 cryogenic
- 2 power supply
- 1 controls
- 1 quench
- 2 hrs 14 min avg turnaround for full repair

Modification Areas

Unit Length

- OCS2 specifies ~2.5 m active length twice CESR-c
- Longer version of CESR-c being pursued
 - Might be 2 units end to end in single cryostat
 - Reduce helium stack costs

Beampipe

- Separate from cryostat for greater flexibility in preparation
- Lower max field (1.67 T)
- Increase pole aperture
 - Plenty of current and field quality overhead in present design
 - Simplifies support plate fabrication
 - Potentially could be used to provide increased bore space

Some Practical Issues

- Clarify procedures for specifying and costing required modifications to CESR-c design
- Interface issues are significant
 - Procedures for interfacing between technical groups
 - Design control procedures
 - Special documentation?
- Would like to specify procedures now, not later

Damping Rings RDR Support

- http://www.lepp.cornell.edu/ilc
 - Entry point for ILC support areas (Wiki) at Cornell
 - For example: WG3b, ILC-Americas, Detector Study
- Damping Ring Support
 - https://wiki.lepp.cornell.edu/ilc/bin/view/Public/DampingRings/WebHome
 - Follow RDR link to get to documentation and Component Specification Sheets
 - Just getting started
 - Very much a work in progress
 - Supporting documentation
 - Schematics
 - Papers
 - Perhaps discussion area for interface between technical groups?

Comp Spec Sheet Example

ILC Damping Rings Component Specification Sheet

Part I - General Information

Component Description: Electron damping ring sextupole

Component Location (beamline): EDR

Document Number: EDR-MAG-sxt-001 Date: 2006-04-03

Prepared by: Mark Palmer (Cornell) email: map36@cornell.edu

Technical/Global System: Magnets

Technical/Global System Contact: John Tompkins (FNAL) email: jct@fnal.gov
DR Area System Contact: Jie Gao (IHEP) email: gaoj@ihep.ac.cn

Part II - Main Parameters

Parameter	Value	Reference
Quantity per beamline	240	[1]
Name in MAD deck	SF	[1]
Nominal integrated strength k ₂ L	0.146 Tm ⁻³	[1]
Effective length	0.25 m	[1]
Pole-tip radius	0.03 m	[1]
Nominal pole-tip field	0.005 T	[1]
Coil resistance		
Current at nominal strength		
Power		
Unit Cost		

Part III - Other Parameters, Information, and Drawings

Field quality specifications [2]

n	systematic	systematic field error		random field error	
	b_n	a_n	b_n	a_n	
4	2.0×10 ⁻⁴		1.0×10 ⁻⁴		
5	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
6	7.0×10 ⁻⁴		1.0×10 ⁻⁴		
7	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
8	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
9	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
10	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
11	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
12	3.2×10 ⁻³		1.0×10 ⁻⁴		
13	1.0×10 ⁻⁴		3.0×10 ⁻⁵		
14	1.0×10 ⁻⁴		3.0×10 ⁻⁵		

ILC Damping Rings Component Specification Sheet

Document Number: EDR-MAG-sxt-001 Date: 2006-02-08

Part IV - References

- [1] MAD deck (OCS v2, 23 March 2006.
- [2] The multipole component is defined by:

$$\frac{\Delta B_y + i\Delta B_x}{|B(r)|} = \sum_n \left(b_n + ia_n\right) \left(\frac{x}{r} + i\frac{y}{r}\right)^{n-1}$$

A. Wolski, J. Gao, S. Guiducci, "Configuration Studies for the ILC Damping Rings," LBNL-59449, pp. 21-22 (February 2006).

New Lattice

- New lattice from ANL (OCS v2)
 - Available March 23rd
 - Have started preparing component specification sheets
- Quadrupole/Sextupole Overview

Arcs

Quad - QFA: N = 240 L = 0.300 K1L = 8.56e-02 QDA: N = 240 L = 0.300 K1L = -8.61e-02 Sext - SF: N = 240 L = 0.250 K2L = 1.46e-01 SD: N = 240 L = 0.250 K2L = -2.29e-01

Straights

Quad - QFI: N = 26 L = 0.150 K1L = 3.84e-02QDI: N = 24 L = 0.150 K1L = -3.52e-02

Wiggler Sections

Quad - QFWH: N = 112 L = 0.150 K1L = 9.50e-02 QDWH: N = 80 L = 0.150 K1L = -8.51e-02

RF Sections

Quad - QFRF: N = 16 L = 0.150 K1L = 1.07e-01 QDRF: N = 32 L = 0.150 K1L = -9.46e-02

Dispersion Suppression Sections

Quad - QFMA1: N = 20 L = 0.300 K1L = 9.96e-02 QDMA1: N = 20 L = 0.300 K1L = -7.92e-02 Sext - SF1: N = 20 L = 0.250 K2L = 0.00e+00 SD1: N = 20 L = 0.250 K2L = 0.00e+00

Matching to Wiggler Sections

Quad - QFMT1: N = 16 L = 0.300 K1L = 1.46e-01 QDMT1: N = 16 L = 0.300 K1L = -1.76e-01 QFMT2: N = 16 L = 0.300 K1L = 1.79e-01 QDMT2: N = 16 L = 0.300 K1L = -1.87e-01

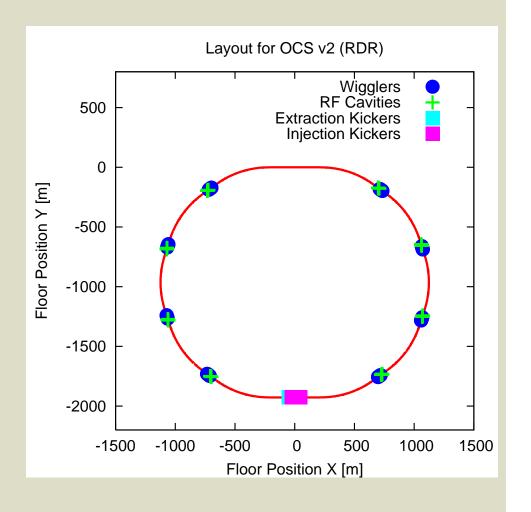
Matching to Straight Sections

Quad - QFMS1: N = 2 L = 0.300 K1L = 1.05e-01 QDMS1: N = 2 L = 0.300 K1L = -1.34e-01 QFMS2: N = 2 L = 0.300 K1L = 7.07e-02 QDMS2: N = 2 L = 0.300 K1L = -8.80e-02

Matching to Injection Section

Quad - QFMINJ1: N = 2 L = 0.300 K1L = 7.61e-02 QDMINJ1: N = 2 L = 0.300 K1L = -1.23e-01 QFMINJ2: N = 2 L = 0.300 K1L = 7.23e-02 QDMINJ2: N = 2 L = 0.300 K1L = -9.98e-02 QFMINJ3: N = 6 L = 0.300 K1L = 6.41e-02 QDMINJ3: N = 6 L = 0.300 K1L = -8.06e-02

Injection Section


Quad - QFINJ1: N = 8 L = 0.300 K1L = 1.69e-01
QDINJ1: N = 8 L = 0.300 K1L = -2.17e-01
QFINJ2H: N = 8 L = 0.150 K1L = 1.41e-01
QDINJ2: N = 2 L = 0.300 K1L = -1.16e-01
QFINJ3: N = 2 L = 0.300 K1L = 9.11e-02
QDINJ3: N = 0 L = 0.000 K1L = 0.00e+00
QFINJ4H: N = 4 L = 0.000 K1L = 0.00e+00
QFINJ5H: N = 0 L = 0.000 K1L = 0.00e+00

Totals: $n(QUAD) = 934 (32 \text{ types}) \sim 783 \text{ physical quads}$

n(SEXT) = 520 (4 types)

OCS v2 Lattice

- Simulations with PEP-II multipole errors look satisfactory
 - Bend/Quad/Sext
 - Baseline error specification
- 8 wiggler/RF sections
 - 8 cavities
 - 10 wigglers

Summary

Wigglers

- Detailed design and costing information available for CESR-c wiggler
- Need to quantify modifications for ILCDR use
 - Evaluate engineering/design issues
 - Specify procedures for design adjustment
 - Specify procedures for costing adjustment

General Magnets

- RDR support page up and running
- Component specification sheets will appear over next few weeks
- Supporting documentation will be provided simultaneously